
textdata Documentation
Release 2.3.3

Jonathan Eunice

Dec 21, 2018

Contents

1 Lines and Text 3
1.1 API Options . 4

2 Words 5

3 Paragraphs 7

4 Attributes (Dicts) 9
4.1 Evaluation . 10
4.2 Return Type . 10

5 Tables 13
5.1 Records and Keys . 14

6 Comments 15

7 Unicode and Encodings 17

8 Alternate Data Paths 19

9 API 21

10 Notes 25

11 Installation 27
11.1 Testing . 27

12 Change Log 29

i

ii

textdata Documentation, Release 2.3.3

textdata makes it easy to have clean, nicely-whitespaced data specified in your program (or a separate text file).

It helps manage both formatting and data type conversions, keeping extra code, gratuitious whitespaces, and data-
specification syntax out of your way.

It’s permissive of the human-oriented layouts needed to make code and data blocks look good, without reflecting those
requirements in the resulting data.

Python string methods give easy ways to clean text up, but it’s no joy reinventing that particular wheel every time
you need it–especially since many of the details are nitsy, low-level, and a little tricky. textdata is a “do what I
mean!” module that replaces a la carte text cleanups with simple, well-tested code that doesn’t lengthen your program
or require constant wheel-reinvention.

Contents 1

textdata Documentation, Release 2.3.3

2 Contents

CHAPTER 1

Lines and Text

>>> lines("""
... There was an old woman who lived in a shoe.
... She had so many children, she didn't know what to do;
... She gave them some broth without any bread;
... Then whipped them all soundly and put them to bed.
... """)
['There was an old woman who lived in a shoe.',
"She had so many children, she didn't know what to do;",
'She gave them some broth without any bread;',
'Then whipped them all soundly and put them to bed.']

Note that the “extra” newlines and leading spaces have been taken care of and discarded.

In addition to lines, text works similarly and with the same parameters, but joins the resulting lines into a unified
string.:

.. code-block:: pycon

>>> text("""
... There was an old woman who lived in a shoe.
... She had so many children, she didn't know what to do;
... She gave them some broth without any bread;
... Then whipped them all soundly and put them to bed.
... """)

“There was an old woman who lived in a shoe.nShe . . . put them to bed.”

(Where the . . . abbreviates exactly the characters you’d expect.)

So it does the same stripping of pointless whitespace at the beginning and end, returning the data as a clean, convenient
string.

Note that while text returns a single string, it maintains the (potentially useful) newlines. Its result is still line-
oriented by default. If you want to elide the newlines, use text(text, join=' ') and the newline characters
will be replaced with spaces.

3

textdata Documentation, Release 2.3.3

A textline call makes this even easier. It gives a single, no-breaks string by default. It’s particularly useful for
rendering single, very long lines.

1.1 API Options

Both lines and text provide provide routinely-needed cleanups:

• remove starting and ending blank lines (which are usually due to Python source formatting)

• remove blank lines internal to your text block

• remove common indentation (dedent)

• expand tabs into spaces (optional)

• strip leading/trailing spaces other than the common prefix (leading spaces removed by request, trailing by de-
fault)

• strip any comments from the end of lines

• join lines together with your choice of separator string

lines(source, noblanks=True, dedent=True, lstrip=False, rstrip=True,
cstrip=True, join=False)

Returns text as a series of cleaned-up lines.

• source is the text to be processed. It can be presented as a single string, or as a list of lines.

• noblanks => all blank lines are eliminated, not just starting and ending ones. (default True).

• dedent => strip a common prefix (usually whitespace) from each line (default True).

• lstrip => strip all left (leading) space from each line (default False). Note that lstrip and dedent
are mutually exclusive ways of handling leading space.

• rstrip => strip all right (trailing) space from each line (default True).

• expandtabs => expand tabs in string (if True, by default amount, otherwise by given amount).

• cstrip => strip comments (from # to the end of each line (default True).

• join => either False (do nothing), True (concatenate lines with \n), or a string that will be used to join
the resulting lines (default False)

text(source, noblanks=True, dedent=True, lstrip=False, rstrip=True,
cstrip=True, join='\n')

Does the same helpful cleanups as lines(), but returns result as a single string, with lines separated by
newlines (by default) and without a trailing newline.

4 Chapter 1. Lines and Text

CHAPTER 2

Words

Often the data you need to encode is almost, but not quite, a series of words. A list of names, a list of color
names–values that are mostly single words, but sometimes have an embedded spaces.

>>> words(' Billy Bobby "Mr. Smith" "Mrs. Jones" ')
['Billy', 'Bobby', 'Mr. Smith', 'Mrs. Jones']

Embedded quotes (either single or double) can be used to construct “words” (really, phrases) containing whitespace
(including tabs and newlines).

words isn’t a full parser, so there are some extreme cases like arbitrarily nested quotations that it can’t handle. It isn’t
confused, however, by embedded apostrophes and other common gotchas.

>>> words("don't be blue")
["don't", "be", "blue"]

>>> words(""" "'this'" works '"great"' """)
["'this'", 'works', '"great"']

words is a good choice for situations where you want a compact, friendly, whitespace-delimited data representa-
tion–but a few of your entries need more than just str.split().

5

textdata Documentation, Release 2.3.3

6 Chapter 2. Words

CHAPTER 3

Paragraphs

Sometimes you want to collect “paragraphs”–contiguous runs of text lines delineated by blank lines. Markdown and
RST document formats, for example, use this convention.

>>> rhyme = """
Hey diddle diddle,

The cat and the fiddle,
The cow jumped over the moon.
The little dog laughed,
To see such sport,

And the dish ran away with the spoon.
"""
>>> paras(rhyme)
[['Hey diddle diddle,'],
['The cat and the fiddle,',
'The cow jumped over the moon.',
'The little dog laughed,',
'To see such sport,'],

['And the dish ran away with the spoon.']]

Or if you’d like each paragraph in a single string:

>>> paras(rhyme, join="\n")
['Hey diddle diddle,',
'The cat and the fiddle,\nThe cow jumped over the moon.\nThe little dog laughed,\nTo
→˓see such sport,',
'And the dish ran away with the spoon.']

Setting join to a space will of course concatenate the lines of each paragraph with a space. This can be useful for
converting from line-oriented paragraphs into each-paragraph as a (potentially very long) single line, a format useful
for cut-and-pasting into many editors and text entry boxes on the Web, or for email systems.

On the off chance you want to preserve the exact intra-paragraph spacing, setting keep_blanks=True will accom-
plish that.

7

textdata Documentation, Release 2.3.3

8 Chapter 3. Paragraphs

CHAPTER 4

Attributes (Dicts)

Dictionaries are hugely useful in Python, but not always the most compact to state. In the literal form, key names must
be quoted (unlike JavaScript), and there are very specific key-value separation rules (using : in the literal form, and =
in the constructor form.

textdata contains a more concise constructor, attrs:

>>> attrs("a=1 b=2 c='something more'")
{'a': 1, 'b': 2, 'c': 'something more'}

(The order in which key-value pairs appear may vary depending on what Python verssion you’re running. Python prior
to 3.6 was almost perversly eager to randomize dictionary order; see below for some workarounds.)

Note that:

1. Quotes are not required for keys; they’re assumed to be strings.

2. No separators are required between key-value pairs (though commas and semicolons may be optionally used).

3. What would “natrually” be a numercial value in Python is indeed a numerical value, not the string representation
you might assume a parsing routine would render.

Even better, colons may also be used as key-value separators, and quotes are only required if the value includes spaces.

>>> attrs("a:1 b:2 c:'something more' d=sweet!")
{'a': 1, 'b': 2, 'c': 'something more', d: 'sweet!'}

To make it easier to import from CSS, semicolons may optionally be used to separate key-value pairs.

>>> attrs("a:1; b: green")
{'a': 1, 'b': 'green'}

Finally, for familiarity with Python literal forms, keys may be quoted, and key-value pairs may be separated by
commas.

>>> attrs(" 'a': 1, 'the color': green")
{'a': 1, 'the color': 'green'}

9

textdata Documentation, Release 2.3.3

About the only option that isn’t available is that keys are always interpreted as strings, not lteral values, and the Python
triple quote is not supported.

You might think that this level of flexibility would make parsing unreliable, but it doesn’t seem to be so. The attrs
parser and its support code are significantly tested. (And it’s derived from a JavaScript codebase which is itself
significantly tested.) And supporting all these forms makes importing content directly from from JavaScript, JSON,
HTML, CSS, or XML quite straightforward.

4.1 Evaluation

attrs tries hard to “do the right thing” with data presented to it, including parsing the string form of numbers and
other data types into natural Python data types. However, that behavior is controllable. To disable the parsing of
Python literal values, set evaluate='minimal' (alternatively, evaluate=False).

Evaluation behavior in general is configurable with the evaluate keyword parameter. natural is the default,
attempting to convert values that “look like” int, float, complex, bool, or None types into their corresponding
Python values.

The hard case is converting from HTML or XML, in which values are often quoted regardless of intended type, so
context is the only way to know if the type should be textual or something else. Quotes are a very strong indicaton that
you want a string value type back. As a result, if you use quoted HTML/XML forms, you have to specifically ask for
full evaluation to get back numeric and other value types.

>>> # Note values returned as strings, even though they look like numbers
>>> # That's because they're explicitly quoted
>>> attrs('a="1" b="2" c="something more"')
{'a': '1', 'b': '2', 'c': 'something more'}

>>> # Request 'full' evaluation to get numeric values
>>> attrs('a="1" b="2" c="something more"', evaluate='full')
{'a': 1, 'b': 2, 'c': 'something more'}

4.2 Return Type

It’s also a sad fact of Python life that, until version 3.6 (late 2016!), there was no clean way to present a literal dict
that would preserve the order of keys in the same order as the source code. As a result, Python developers have often
needed the much less graceful collections.OrderedDict, which, while effective, lacked a clean literal form.
attrs can help.:

>>> from collections import OrdredDict
>>> attrs("a=1 b=2 c='something more'", dict=OrderedDict)
OrderedDict([('a', 1), ('b', 2), ('c', 'something more')])

Terse, yet returns an OrderedDict with its keys in the expected order.

attrs also exports Dict, an attribute-accessible dict subclass. (Note, in future versions this will been replaced
with items.Item, an inherently ordered, attribute-accessible dictionary.

>>> attrs("a=1 b=2 c='something more'", dict=Dict)
Dict(a=1, b=2, c='something more')

>>> d = attrs("a=1 b=2 c='something more'", dict=Dict)
>>> d.a

(continues on next page)

10 Chapter 4. Attributes (Dicts)

https://pypi.org/project/items/

textdata Documentation, Release 2.3.3

(continued from previous page)

1
>>> d.a = 12
>>> d
Dict(a=12, b=2, c='something more')

4.2. Return Type 11

textdata Documentation, Release 2.3.3

12 Chapter 4. Attributes (Dicts)

CHAPTER 5

Tables

Much data comes in tabular format. The table() and records() functions help you extract it in convenient
ways. . . either as a list of lists, or as a list of dictionaries.

>>> text = """
... name age strengths
... ---- --- ---------------
... Joe 12 woodworking
... Jill 12 slingshot
... Meg 13 snark, snapchat
... """

>>> table(text)
[['name', 'age', 'strengths'],
['Joe', 12, 'woodworking'],
['Jill', 12, 'slingshot'],
['Meg', 13, 'snark, snapchat']]

>>> records(text)
[{'name': 'Joe', 'age': 12, 'strengths': 'woodworking'},
{'name': 'Jill', 'age': 12, 'strengths': 'slingshot'},
{'name': 'Meg', 'age': 13, 'strengths': 'snark, snapchat'}]

The table() function returns a list of lists, while the records() function uses the table header as keys and returns
a list of dictionaries.

table() and records() work even if you have a lot of extra fluff:

>>> fancy = """
... +------+-----+-----------------+
... | name | age | strengths |
... +------+-----+-----------------+
... | Joe | 12 | woodworking |
... | Jill | 12 | slingshot |
... | Meg | 13 | snark, snapchat |

(continues on next page)

13

textdata Documentation, Release 2.3.3

(continued from previous page)

... +------+-----+-----------------+

... """
>>> assert table(text) == table(fancy)
>>> assert records(text) == records(fancy)

The parsing algorithm is heuristic, but works well with tables formatted in a variety of conventional ways including
Markdown, RST, ANSI/Unicode line drawing characters, plain text columns and borders, See the table tests for
dozens of samples of formats that work.

What constitutes table columns are contiguous bits of text, without intervening whitespace. Typographic “rivers” of
whitespace define column breaks. For this reason, it’s recommended that every table column have a separator line,
usually consistng of '-', '=', or Unicode box drawing characters, to control column width.

If there are '#' characters in your table data, best to pass cstrip=False so that they will not be erroneously
interpreted as comments.

5.1 Records and Keys

Records depends on there being a header row available.

Many tables use natural language headers, such as First Name and Item Price. When retrieving records (dicts),
this is not impossible, but it’s often also not entirely convenient–especially for attribute-accessible dictionary keys. So
records() provides a keyclean feature that passes each key through a cleanup function. By default whitespace
at the start and end of the key are removed, multiple interior whitespace characters are collapsed and replaced with
underscore characters (_).

You can provide your own custom keyclean function if you like, or None if you like your keys as-is.

14 Chapter 5. Tables

CHAPTER 6

Comments

If you need to embed more than a few lines of immediate data in your program, you may want some comments to
explain what’s going on. By default, textdata strip out Python-like comments (from # to end of line). So:

exclude = words("""
__pycache__ *.pyc *.pyo # compilation artifacts
.hg* .git* # repository artifacts
.coverage # code tool artifacts
.DS_Store # platform artifacts

""")

Yields:

['__pycache__', '*.pyc', '*.pyo', '.hg*', '.git*',
'.coverage', '.DS_Store']

You could of course write it out as:

exclude = [
'__pycache__', '*.pyc', '*.pyo', # compilation artifacts
'.hg*', '.git*', # repository artifacts
'.coverage', # code tool artifacts
'.DS_Store' # platform artifacts

]

But you’d need more nitsy punctuation, and it’s less compact.

If however you want to capture comments (or other text that includes the hashmark / number sign character), set
cstrip=False (though that is probably more useful with the lines and text APIs than for words). ß

15

textdata Documentation, Release 2.3.3

16 Chapter 6. Comments

CHAPTER 7

Unicode and Encodings

textdata doesn’t have any unique friction with Unicode characters and encodings. That said, any time you use
Unicode characters in Python 2 source files, care is warranted.

Best advice is: It’s time to upgrade already! Python 3 is lovely and ever-improving. Python 2 is now showing its age.

If you do need to continue supporting Python 2, either make sure your literal strings are marked with a “u” prefix:
u"". To turn Unicode literal processing on by default.

You can explicitly mark strings as unicode in Python 3.3 and following, though it’s only necessary if you’re maintaing
backwards portability, since Python 3 strings are by default Unicode strings.

It can also be helpful (amd in Python 2, often strictly necessary) to declare your source encoding by putting a specially-
formatted PEP 263 comment as the first or second line of the source code:

-*- coding: utf-8 -*-

This will usually endorse UTF-8, but other encodings are possible. Python 3 defaults to a UTF-8 encoding, but Python
2 sadly assumes ASCII.

Finally, if you are reading from or writing to a file on Python 2, strongly recommend you use an alternate form of
open that supports automatic encoding (which is built-in to Python 3). E.g.:

from codecs import open

with open('filepath', encoding='utf-8') as f:
data = f.read()

This construction works across Python 2 and 3. Just add a mode='w' for writing.ß

17

https://www.python.org/dev/peps/pep-0263/

textdata Documentation, Release 2.3.3

18 Chapter 7. Unicode and Encodings

CHAPTER 8

Alternate Data Paths

textdata is primarily designed to deal with text coming from source code, but there’s no reason text coming from
a file, a generator, or other sources can enjoy the module’s text cleanups and lightweight parsing.

To make this “from whatever source” ability more general, all of the main textdata entry points (lines, text,
words, paras, table, and records) can accept either a unified string or a sequence of text lines. Most often this
will be a list of strings (one per line), but it can also be an iterator, generator, or such that returns a sequence of strings.

19

textdata Documentation, Release 2.3.3

20 Chapter 8. Alternate Data Paths

CHAPTER 9

API

textdata.lines(source, noblanks=True, dedent=True, lstrip=False, rstrip=True, expandtabs=False,
cstrip=True, join=False)

Grab lines from a string. Discard initial and final lines if blank.

Parameters

• source (str|lines) – Text (or list of text lines) to be processed

• dedent (bool) – a common prefix should be stripped from each line (default True)

• noblanks (bool) – allow no blank lines at all (default True)

• lstrip (bool) – all left space be stripped from each line (default False); dedent and lstrip
are mutually exclusive

• rstrip (bool) – all right space be stripped from each line (default True)

• expandtabs (Union[bool,int]) – should all tabs be expanded? if int, by how much?

• cstrip (bool) – strips comment strings from # to end of each line (like Python itself)

• join (bool|str) – if False, no effect; otherwise a string used to join the lines

Returns a list of strings

Return type list

textdata.text(source, **kwargs)
Like lines(), but returns result as unified text. Useful primarily because of the nice cleanups lines() does.

Parameters

• source (str|lines) – Text (or list of text lines) to be processed

• join (str) – String to join lines with. Typically newline for line-oriented text but change
to ” ” for a single continous line.

Returns the cleaned string

Return type str

21

textdata Documentation, Release 2.3.3

textdata.textline(source, cstrip=True)
Like text(), but returns result as unified string that is not line-oriented. Really a special case of text()

Parameters

• source (str|list) –

• cstrip (bool) – Should comments be stripped? (default: True)

Returns the cleaned string

Return type str

textdata.words(source, cstrip=True)
Returns a sequence of words, like qw() in Perl. Similar to s.split(), except that it respects quoted spans for the
occasional word (really, phrase) with spaces included.) Like lines, removes comment strings by default.

Parameters

• source (str|list) – Text (or list of text lines) to gather words from

• cstrip (bool) – Should comments be stripped? (default: True)

Returns list of words/phrases

Return type list

textdata.paras(source, keep_blanks=False, join=False, cstrip=True)
Given a string or list of text lines, return a list of lists where each sub list is a paragraph (list of non-blank lines).
If the source is a string, use lines to split into lines. Optionally can also keep the runs of blanks, and/or join
the lines in each paragraph with a desired separator (likely a newline if you want to preserve multi-line structure
in the resulting string, or ” ” if you don’t). Like words, lines, and textlines, will also strip comments
by default.

Parameters

• source (str|list) – Text (or list of text lines) from which paras are to be gathered

• keep_blanks – Should internal blank lines be retained (default: False)

• join (bool|str) – Should paras be joined into a string? (default: False).

• cstrip (bool) – Should comments be stripped? (default: True)

Returns list of strings (each a paragraph)

Return type list

textdata.attrs(source, evaluate=’natural’, dict=<type ’dict’>, cstrip=True)
Parse attribute strings into a dict (or other mapping type). By default evaluates literals as natural to Python, e.g.
turning what looks like numbers into into real int and float instances, not just strings). Quoted values are
always treated as strings, never evaluated.

Parameters

• source (Union[str, List[str]]) – Text to parse (as string or list of lines)

• evaluate (Union[str, bool]) – How to evaluate resulting values

• dict (type) – Type of mapping to return

• cstrip (bool) – Remove comments from string before interpretation?

• astyle – Deprecated. Use dict parameter instead.

• literal – Deprecated. Use evaluate parameter instead.

Returns dict (or given dict type)

22 Chapter 9. API

textdata Documentation, Release 2.3.3

class textdata.Dict(*args, **kwargs)
Attribute-accessible dict subclass. Does whatever dict does, but its keys accessible via .attribute notation.
Provided as a convenience. In future, will use the inherently ordered items.Item instead. It is more robust and
complete, though only supporting Python 2 at the moment. But if you’re on Python 3, Items recommended
over Dict.

textdata.table(source, header=None, evaluate=True, cstrip=True)
Return a list of lists representing a table.

Parameters

• source (Union[str, List[str]]) – Text to parse (as string or list of lines)

• header (Union[str, List, None]) – Header for the table

• evaluate (Union[str, function, None]) – Indicates how to post-process table
cells. By default, True or “natural” means as Python literals. Other options are False or
‘minimal’ (just string trimming), or None or ‘none’. Can also provide a custom function.

• cstrip (bool) – strip comments?

Returns List of lists, where each inner list represents a row.

textdata.records(source, dict=<class ’textdata.attrs.Dict’>, keyclean=<function keyclean>,
**kwargs)

Alternate table parser. Renders not a list of lists, but a list of attribute-accessible Dict (dict subclasses).

Parameters

• source (Union[str, List[str]]) – Text to parse (as string or list of lines)

• dict (type) – dictionary subtype in which to return results

• keyclean (Union[Function, None]) – function to clean table headers into more
suitable dictionary keys

• **kwargs – All other kw args passed to textdata.table

Returns list of dictionaries, one per non-header row

23

https://pypi.org/project/items/

textdata Documentation, Release 2.3.3

24 Chapter 9. API

CHAPTER 10

Notes

• Those who like how textdata simplifies data extraction from text should also consider quoter, a module with
the same philosophy about wrapping text and joining composite data into strings.

• Automated multi-version testing managed with the wonderful pytest, pytest-cov, coverage, and tox. Continuous
integration testing with Travis-CI. Packaging linting with pyroma.

• Successfully packaged for, and tested against, all late-model versions of Python: 2.7, 3.3, 3.4, 3.5, 3.6, and 3.7
pre-release, as well as recent versions of PyPy and PyPy3.

• The author, Jonathan Eunice or @jeunice on Twitter welcomes your comments and suggestions.

25

https://pypi.org/project/quoter
https://pypi.org/project/pytest
https://pypi.org/project/pytest-cov
https://pypi.org/project/coverage
https://pypi.org/project/tox
https://travis-ci.org/jonathaneunice/textdata
https://pypi.org/project/pyroma
mailto:jonathan.eunice@gmail.com
http://twitter.com/jeunice

textdata Documentation, Release 2.3.3

26 Chapter 10. Notes

CHAPTER 11

Installation

To install or upgrade to the latest version:

pip install -U textdata

You may need to prefix these with sudo to authorize installation. In environments without super-user privileges, you
may want to use pip’s --user option, to install only for a single user, rather than system-wide. Sometimes you need
to use pip2 or pip3 to install under a given version of Python. If your pip programs don’t seem well configured
for the version of Python you want, you can install directly:

python3.6 -m pip install -U textdata

11.1 Testing

If you wish to run the module tests locally, you’ll need to install pytest and tox. For full testing, you will also need
pytest-cov and coverage. Then run one of these commands:

tox # normal run - speed optimized
tox -e py27 # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini # run full coverage tests

27

textdata Documentation, Release 2.3.3

28 Chapter 11. Installation

CHAPTER 12

Change Log

2.3.2 (September 20, 2018)

Removed print() inadvertently added in last release.

2.3.0 (September 15, 2018)

Changed tab handling behavior. Previously used str.expandtabs() uniformly. While useful for
dedent (removing common line indentation), could obscure important internal tabs. Default behavior is
now to NOT expandtabs unless explicitly requested. However, leading tabs are still expanded for dedent
processing.

2.2.0 (July 7, 2018)

Reorganized code. Tidied and improved comments.

Improved key cleaning for records()

Added full evaluation mode.

Strengthened table evaluations.

Improved tests and docs.

Dropped deprecated astype and literal parameters to attrs().

Drops support for Python 2.6. Mainstream support ended 5 years ago. Upgrade already!

2.1.0 (July 4, 2018)

Removed debugging statement inadverntaently left in code.

Improve documentation, esp. for APIs.

Enable attrs, table, and records to take the same string or sequence of lines input as the outher
routines.

Cleaned up exported names. OrderedDict no longer exported as a convenience.

2.0.2 (July 3, 2018)

Documentation tweaks.

29

textdata Documentation, Release 2.3.3

2.0.1

Updated for new pypi.org URLs.

Plus other minor tweaks, like tightening tox targets in favor of Travis CI.

2.0.0 (October 30, 2017)

Major release.

Added table() and records() functions for ingesting tabular and record-oriented data respectively.

Regularized handling of object evaluation, comment stripping, and other attributes.

1.7.3 (October 13, 2017)

Added pyproject.toml for PEP 518 compliance.

Updated testing matrix to accomodate new PyPy3 version on Travis CI.

1.7.2 (May 30, 2017)

Update compatibility strategy to make Python 3 centric. Python 2 is now the outlier. More future-proof.

Doc tweaks.

1.7.1 (January 30, 2017)

Returned test coverage to 100% of lines (introducing attrs() took it briefly down to 99% testing).

1.7.0 (January 30, 2017)

Added attrs() function for parsing dict instances out of text.

1.6.2 (January 23, 2017)

Updates testing. Newly qualified under 2.7.13 and 3.6, as well as most recent builds of pypy and pypy3.

1.6.1 (September 15, 2015)

Added Python 3.5.0 final and PyPy 2.6.1 to the testing matrix.

1.6.0 (September 1, 2015)

Added textline() routine (NB textline not textlines) as a quick “grab a single very long
line” function. It actually allows multiple paragraphs to be grabbed, each as a single long line, separated
by double-newlines (i.e. Markdown style).

1.5.0 (September 1, 2015)

Added text() as preferred synonym for textlines(), as that is more consistent with the rest of the
naming scheme. Deprecated textlines().

1.4.3 (August 26, 2015)

Reorganizes documentation using Sphinx.

1.4.2 (August 17, 2015)

Achieves 100% test coverage. Updated testing scheme to automatically evaluate and report combined
coverage across multiple Python versions.

1.4.0

Allows all routines to accept a list of text lines, in addition to text as a single string.

1.3.0

Adds a paragraph constructor, paras.

30 Chapter 12. Change Log

textdata Documentation, Release 2.3.3

1.2.0

Adds comment stripping. Packaging and testing also tweaked.

1.1.5

Adds the bdist_wheel packaging format.

1.1.3

Switches from BSD to Apache License 2.0 and integrates tox testing with setup.py.

1.1.0

Added the words constructor.

1.0

Misc. changes from 1.0 or prior:

Common line prefix is now computed without considering blank lines, so blank lines need not have any
indentation on them just to “make things work.”

The tricky case where all lines have a common prefix, but it’s not entirely composed of whitespace, now
properly handled. This is useful for lines that are already “quoted” such as with leading "|" or ">"
symbols (common in Markdown and old-school email usage styles).

textlines() is now somewhat superfluous, now that lines() has a join kwarg. But you may
prefer it for the implicit indication that it’s turning lines into text.

31

textdata Documentation, Release 2.3.3

32 Chapter 12. Change Log

Index

A
attrs() (in module textdata), 22

D
Dict (class in textdata), 22

L
lines() (in module textdata), 21

P
paras() (in module textdata), 22

R
records() (in module textdata), 23

T
table() (in module textdata), 23
text() (in module textdata), 21
textline() (in module textdata), 21

W
words() (in module textdata), 22

33

	Lines and Text
	API Options

	Words
	Paragraphs
	Attributes (Dicts)
	Evaluation
	Return Type

	Tables
	Records and Keys

	Comments
	Unicode and Encodings
	Alternate Data Paths
	API
	Notes
	Installation
	Testing

	Change Log

