

textdata

textdata makes it easy to have clean, nicely-whitespaced data specified in
your program (or a separate text file).

It helps manage both formatting and data type conversions, keeping extra code,
gratuitious whitespaces, and data-specification syntax out of your way.

It’s permissive of the human-oriented layouts needed to make code and data
blocks look good, without reflecting those requirements in the resulting data.

Python string methods give easy ways to clean text up, but it’s no joy
reinventing that particular wheel every time you need it–especially since many
of the details are nitsy, low-level, and a little tricky. textdata is a “do
what I mean!” module that replaces a la carte text cleanups with simple,
well-tested code that doesn’t lengthen your program or require constant
wheel-reinvention.

	Lines and Text

	Words

	Paragraphs

	Attributes (Dicts)

	Tables

	Comments

	Unicode and Encodings

	Alternate Data Paths

	API Details

	Notes

	Installation

	Change Log

Lines and Text

>>> lines("""
... There was an old woman who lived in a shoe.
... She had so many children, she didn't know what to do;
... She gave them some broth without any bread;
... Then whipped them all soundly and put them to bed.
... """)
['There was an old woman who lived in a shoe.',
 "She had so many children, she didn't know what to do;",
 'She gave them some broth without any bread;',
 'Then whipped them all soundly and put them to bed.']

Note that the “extra” newlines and leading spaces have been
taken care of and discarded.

In addition to lines, text works similarly and with the same
parameters, but joins the resulting lines into a unified string.:

.. code-block:: pycon

>>> text("""
... There was an old woman who lived in a shoe.
... She had so many children, she didn't know what to do;
... She gave them some broth without any bread;
... Then whipped them all soundly and put them to bed.
... """)

“There was an old woman who lived in a shoe.nShe …put them to bed.”

(Where the … abbreviates exactly the characters you’d expect.)

So it does the same stripping of pointless whitespace at the beginning and
end, returning the data as a clean, convenient string.

Note that while text returns a single string, it maintains the
(potentially useful) newlines. Its result is still line-oriented by default.
If you want to elide the newlines, use text(text, join=' ') and the
newline characters will be replaced with spaces.

A textline call makes this even easier. It gives a single, no-breaks
string by default. It’s particularly useful for rendering single, very long
lines.

API Options

Both lines and text provide provide routinely-needed cleanups:

	remove starting and ending blank lines
(which are usually due to Python source formatting)

	remove blank lines internal to your text block

	remove common indentation (dedent)

	expand tabs into spaces (optional)

	strip leading/trailing spaces other than the common prefix
(leading spaces removed by request, trailing by default)

	strip any comments from the end of lines

	join lines together with your choice of separator string

lines(source, noblanks=True, dedent=True, lstrip=False, rstrip=True, cstrip=True, join=False)

Returns text as a series of cleaned-up lines.

	source is the text to be processed. It can be presented as a single string, or as a list of lines.

	noblanks => all blank lines are eliminated, not just starting and ending ones. (default True).

	dedent => strip a common prefix (usually whitespace) from each line (default True).

	
	lstrip => strip all left (leading) space from each line (default False).

	Note that lstrip and dedent are mutually exclusive ways of handling leading space.

	rstrip => strip all right (trailing) space from each line (default True).

	expandtabs => expand tabs in string (if True, by default amount, otherwise by given amount).

	cstrip => strip comments (from # to the end of each line (default True).

	
	join => either False (do nothing), True (concatenate lines with \n),

	or a string that will be used to join the resulting lines (default False)

text(source, noblanks=True, dedent=True, lstrip=False, rstrip=True, cstrip=True, join='\n')

Does the same helpful cleanups as lines(), but returns
result as a single string, with lines separated by newlines (by
default) and without a trailing newline.

Words

Often the data you need to encode is almost, but not quite, a series of
words. A list of names, a list of color names–values that are mostly
single words, but sometimes have an embedded spaces.

>>> words(' Billy Bobby "Mr. Smith" "Mrs. Jones" ')
['Billy', 'Bobby', 'Mr. Smith', 'Mrs. Jones']

Embedded quotes (either single or double) can be used to construct
“words” (really, phrases) containing whitespace (including tabs
and newlines).

words isn’t a full parser, so there are some extreme cases like
arbitrarily nested quotations that it can’t handle. It isn’t confused,
however, by embedded apostrophes and other common gotchas.

>>> words("don't be blue")
["don't", "be", "blue"]

>>> words(""" "'this'" works '"great"' """)
["'this'", 'works', '"great"']

words is a good choice for situations where you want a compact,
friendly, whitespace-delimited data representation–but a few of your
entries need more than just str.split().

Paragraphs

Sometimes you want to collect “paragraphs”–contiguous runs of text lines
delineated by blank lines. Markdown and RST document formats,
for example, use this convention.

>>> rhyme = """
 Hey diddle diddle,

 The cat and the fiddle,
 The cow jumped over the moon.
 The little dog laughed,
 To see such sport,

 And the dish ran away with the spoon.
"""
>>> paras(rhyme)
[['Hey diddle diddle,'],
 ['The cat and the fiddle,',
 'The cow jumped over the moon.',
 'The little dog laughed,',
 'To see such sport,'],
 ['And the dish ran away with the spoon.']]

Or if you’d like each paragraph in a single string:

>>> paras(rhyme, join="\n")
['Hey diddle diddle,',
 'The cat and the fiddle,\nThe cow jumped over the moon.\nThe little dog laughed,\nTo see such sport,',
 'And the dish ran away with the spoon.']

Setting join to a space will of course concatenate the lines of each
paragraph with a space. This can be useful for converting from line-oriented
paragraphs into each-paragraph as a (potentially very long) single line, a
format useful for cut-and-pasting into many editors and text entry boxes on the
Web, or for email systems.

On the off chance you want to preserve the exact intra-paragraph spacing,
setting keep_blanks=True will accomplish that.

Attributes (Dicts)

Dictionaries are hugely useful in Python, but not always the most compact to
state. In the literal form, key names must be quoted (unlike JavaScript),
and there are very specific key-value separation rules (using : in the
literal form, and = in the constructor form.

textdata contains a more concise constructor, attrs:

>>> attrs("a=1 b=2 c='something more'")
{'a': 1, 'b': 2, 'c': 'something more'}

(The order in which key-value pairs appear may vary depending on what Python
verssion you’re running. Python prior to 3.6 was almost perversly eager to
randomize dictionary order; see below for some workarounds.)

Note that:

	Quotes are not required for keys; they’re assumed to be strings.

	No separators are required between key-value pairs (though commas and
semicolons may be optionally used).

	What would “natrually” be a numercial value in Python is indeed a
numerical value, not the string representation you might assume a
parsing routine would render.

Even better, colons may also be used as key-value separators, and
quotes are only required if the value includes spaces.

>>> attrs("a:1 b:2 c:'something more' d=sweet!")
{'a': 1, 'b': 2, 'c': 'something more', d: 'sweet!'}

To make it easier to import from CSS,
semicolons may optionally be used to separate key-value pairs.

>>> attrs("a:1; b: green")
{'a': 1, 'b': 'green'}

Finally, for familiarity with Python literal forms, keys may be quoted, and
key-value pairs may be separated by commas.

>>> attrs(" 'a': 1, 'the color': green")
{'a': 1, 'the color': 'green'}

About the only option that isn’t available is that keys are always interpreted
as strings, not lteral values, and the Python triple quote is not supported.

You might think that this level of flexibility would make parsing unreliable,
but it doesn’t seem to be so. The attrs parser and its support code are
significantly tested. (And it’s derived from a JavaScript codebase which is
itself significantly tested.) And supporting all these forms makes importing
content directly from from JavaScript, JSON, HTML, CSS, or XML quite
straightforward.

Evaluation

attrs tries hard to “do the right thing” with data presented to it,
including parsing the string form of numbers and other data types into natural
Python data types. However, that behavior is controllable. To disable the
parsing of Python literal values, set evaluate='minimal' (alternatively,
evaluate=False).

Evaluation behavior in general is configurable with the evaluate keyword
parameter. natural is the default, attempting to convert values that “look like”
int, float, complex, bool, or None types into their corresponding
Python values.

The hard case is converting from HTML or XML, in which values are often quoted
regardless of intended type, so context is the only way to know if the type
should be textual or something else. Quotes are a very strong indicaton that
you want a string value type back. As a result, if you use quoted HTML/XML
forms, you have to specifically ask for full evaluation to get back numeric
and other value types.

>>> # Note values returned as strings, even though they look like numbers
>>> # That's because they're explicitly quoted
>>> attrs('a="1" b="2" c="something more"')
{'a': '1', 'b': '2', 'c': 'something more'}

>>> # Request 'full' evaluation to get numeric values
>>> attrs('a="1" b="2" c="something more"', evaluate='full')
{'a': 1, 'b': 2, 'c': 'something more'}

Return Type

It’s also a sad fact of Python life that, until version 3.6 (late 2016!), there
was no clean way to present a literal dict that would preserve the order of
keys in the same order as the source code. As a result, Python developers have
often needed the much less graceful collections.OrderedDict, which, while
effective, lacked a clean literal form. attrs can help.:

>>> from collections import OrdredDict
>>> attrs("a=1 b=2 c='something more'", dict=OrderedDict)
OrderedDict([('a', 1), ('b', 2), ('c', 'something more')])

Terse, yet returns an OrderedDict with its keys in the expected order.

attrs also exports Dict, an attribute-accessible
dict subclass. (Note, in future versions this will been
replaced with items.Item [https://pypi.org/project/items/],
an inherently ordered, attribute-accessible dictionary.

>>> attrs("a=1 b=2 c='something more'", dict=Dict)
Dict(a=1, b=2, c='something more')

>>> d = attrs("a=1 b=2 c='something more'", dict=Dict)
>>> d.a
1
>>> d.a = 12
>>> d
Dict(a=12, b=2, c='something more')

Tables

Much data comes in tabular format. The table() and records()
functions help you extract it in convenient ways…either as a list
of lists, or as a list of dictionaries.

>>> text = """
... name age strengths
... ---- --- ---------------
... Joe 12 woodworking
... Jill 12 slingshot
... Meg 13 snark, snapchat
... """

>>> table(text)
[['name', 'age', 'strengths'],
 ['Joe', 12, 'woodworking'],
 ['Jill', 12, 'slingshot'],
 ['Meg', 13, 'snark, snapchat']]

>>> records(text)
[{'name': 'Joe', 'age': 12, 'strengths': 'woodworking'},
 {'name': 'Jill', 'age': 12, 'strengths': 'slingshot'},
 {'name': 'Meg', 'age': 13, 'strengths': 'snark, snapchat'}]

The table() function returns a list of lists, while the records()
function uses the table header as keys and returns a list of dictionaries.

table() and records() work even if you have a lot of extra fluff:

>>> fancy = """
... +------+-----+-----------------+
... | name | age | strengths |
... +------+-----+-----------------+
... | Joe | 12 | woodworking |
... | Jill | 12 | slingshot |
... | Meg | 13 | snark, snapchat |
... +------+-----+-----------------+
... """
>>> assert table(text) == table(fancy)
>>> assert records(text) == records(fancy)

The parsing algorithm is heuristic, but works well with tables formatted in a
variety of conventional ways including Markdown, RST, ANSI/Unicode line drawing
characters, plain text columns and borders, …. See the table tests for dozens
of samples of formats that work.

What constitutes table columns are contiguous bits of text, without intervening
whitespace. Typographic “rivers” of whitespace define column breaks. For this
reason, it’s recommended that every table column have a separator line, usually
consistng of '-', '=', or Unicode box drawing characters, to control
column width.

If there are '#' characters in your table data, best to pass
cstrip=False so that they will not be erroneously interpreted as comments.

Records and Keys

Records depends on there being a header row available.

Many tables use natural language headers, such as First Name and Item Price.
When retrieving records (dicts), this is not impossible, but it’s often also not
entirely convenient–especially for attribute-accessible dictionary keys. So records()
provides a keyclean feature that passes each key through a cleanup function.
By default whitespace at the start and end of the key are removed, multiple interior
whitespace characters are collapsed and replaced with underscore characters (_).

You can provide your own custom keyclean function if you like, or None if you
like your keys as-is.

Comments

If you need to embed more than a few lines of immediate data in your program,
you may want some comments to explain what’s going on. By default,
textdata strip out Python-like comments (from # to
end of line). So:

exclude = words("""
 __pycache__ *.pyc *.pyo # compilation artifacts
 .hg* .git* # repository artifacts
 .coverage # code tool artifacts
 .DS_Store # platform artifacts
""")

Yields:

['__pycache__', '*.pyc', '*.pyo', '.hg*', '.git*',
 '.coverage', '.DS_Store']

You could of course write it out as:

exclude = [
 '__pycache__', '*.pyc', '*.pyo', # compilation artifacts
 '.hg*', '.git*', # repository artifacts
 '.coverage', # code tool artifacts
 '.DS_Store' # platform artifacts
]

But you’d need more nitsy punctuation, and it’s less compact.

If however you want to capture comments (or other text that includes the
hashmark / number sign character), set cstrip=False (though that is
probably more useful with the lines and text APIs than for words).
ß

Unicode and Encodings

textdata doesn’t have any unique friction with Unicode characters and
encodings. That said, any time you use Unicode characters in Python 2 source
files, care is warranted.

Best advice is: It’s time to upgrade already! Python 3 is lovely and
ever-improving. Python 2 is now showing its age.

If you do need to continue supporting Python 2, either make sure your literal
strings are marked with a “u” prefix: u"★". To turn Unicode
literal processing on by default.

You can explicitly mark strings as unicode in Python 3.3 and following,
though it’s only necessary if you’re maintaing backwards portability,
since Python 3 strings are by default Unicode strings.

It can also be helpful (amd in Python 2, often strictly necessary)
to declare your source encoding by putting a specially-formatted
PEP 263 [https://www.python.org/dev/peps/pep-0263/]
comment as the first or second line of the source code:

-*- coding: utf-8 -*-

This will usually endorse UTF-8, but other encodings are possible. Python 3
defaults to a UTF-8 encoding, but Python 2 sadly assumes ASCII.

Finally, if you are reading from or writing to a file on Python 2,
strongly recommend you use an alternate form of open that
supports automatic encoding (which is built-in to Python 3). E.g.:

from codecs import open

with open('filepath', encoding='utf-8') as f:
 data = f.read()

This construction works across Python 2 and 3. Just add a mode='w' for
writing.ß

Alternate Data Paths

textdata is primarily designed to deal with text coming from source code,
but there’s no reason text coming from a file, a generator, or other sources
can enjoy the module’s text cleanups and lightweight parsing.

To make this “from whatever source” ability more general, all of the main
textdata entry points (lines, text, words, paras,
table, and records) can accept either a unified string or a sequence of
text lines. Most often this will be a list of strings (one per line), but it
can also be an iterator, generator, or such that returns a sequence of strings.

API

	
textdata.lines(source, noblanks=True, dedent=True, lstrip=False, rstrip=True, expandtabs=False, cstrip=True, join=False)

	Grab lines from a string. Discard initial and final lines if blank.

	Parameters

	
	source (str|lines) – Text (or list of text lines) to be processed

	dedent (bool) – a common prefix should be stripped from each line (default True)

	noblanks (bool) – allow no blank lines at all (default True)

	lstrip (bool) – all left space be stripped from each line (default False);
dedent and lstrip are mutually exclusive

	rstrip (bool) – all right space be stripped from each line (default True)

	expandtabs (Union[bool,int]) – should all tabs be expanded? if int, by how much?

	cstrip (bool) – strips comment strings from # to end of each line (like Python itself)

	join (bool|str) – if False, no effect; otherwise a string used to join the lines

	Returns

	a list of strings

	Return type

	list

	
textdata.text(source, **kwargs)

	Like lines(), but returns result as unified text. Useful primarily
because of the nice cleanups lines() does.

	Parameters

	
	source (str|lines) – Text (or list of text lines) to be processed

	join (str) – String to join lines with. Typically newline for line-oriented
text but change to ” ” for a single continous line.

	Returns

	the cleaned string

	Return type

	str

	
textdata.textline(source, cstrip=True)

	Like text(), but returns result as unified string that is not
line-oriented. Really a special case of text()

	Parameters

	
	source (str|list) –

	cstrip (bool) – Should comments be stripped? (default: True)

	Returns

	the cleaned string

	Return type

	str

	
textdata.words(source, cstrip=True)

	Returns a sequence of words, like qw() in Perl. Similar to s.split(),
except that it respects quoted spans for the occasional word (really,
phrase) with spaces included.) Like lines, removes comment strings by
default.

	Parameters

	
	source (str|list) – Text (or list of text lines) to gather words from

	cstrip (bool) – Should comments be stripped? (default: True)

	Returns

	list of words/phrases

	Return type

	list

	
textdata.paras(source, keep_blanks=False, join=False, cstrip=True)

	Given a string or list of text lines, return a list of lists where each
sub list is a paragraph (list of non-blank lines). If the source is a
string, use lines to split into lines. Optionally can also keep the
runs of blanks, and/or join the lines in each paragraph with a desired
separator (likely a newline if you want to preserve multi-line structure
in the resulting string, or ” ” if you don’t). Like words,
lines, and textlines, will also strip comments by default.

	Parameters

	
	source (str|list) – Text (or list of text lines) from which paras are to be gathered

	keep_blanks – Should internal blank lines be retained (default: False)

	join (bool|str) – Should paras be joined into a string? (default: False).

	cstrip (bool) – Should comments be stripped? (default: True)

	Returns

	list of strings (each a paragraph)

	Return type

	list

	
textdata.attrs(source, evaluate='natural', dict=<type 'dict'>, cstrip=True)

	Parse attribute strings into a dict (or other mapping type).
By default evaluates literals as natural to Python, e.g. turning
what looks like numbers into into real int and float instances,
not just strings).
Quoted values are always treated as strings, never evaluated.

	Parameters

	
	source (Union[str, List[str]]) – Text to parse (as string or list of lines)

	evaluate (Union[str, bool]) – How to evaluate resulting values

	dict (type) – Type of mapping to return

	cstrip (bool) – Remove comments from string before interpretation?

	astyle – Deprecated. Use dict parameter instead.

	literal – Deprecated. Use evaluate parameter instead.

	Returns

	dict (or given dict type)

	
class textdata.Dict(*args, **kwargs)

	Attribute-accessible dict subclass. Does whatever dict does, but
its keys accessible via .attribute notation. Provided as a convenience. In
future, will use the inherently ordered items.Item [https://pypi.org/project/items/] instead. It is more robust and
complete, though only supporting Python 2 at the moment. But if you’re on
Python 3, Items recommended over Dict.

	
textdata.table(source, header=None, evaluate=True, cstrip=True)

	Return a list of lists representing a table.

	Parameters

	
	source (Union[str, List[str]]) – Text to parse (as string or list of lines)

	header (Union[str, List, None]) – Header for the table

	evaluate (Union[str, function, None]) – Indicates how to post-process
table cells. By default, True or “natural” means as Python literals.
Other options are False or ‘minimal’ (just string trimming), or
None or ‘none’. Can also provide a custom function.

	cstrip (bool) – strip comments?

	Returns

	List of lists, where each inner list represents a row.

	
textdata.records(source, dict=<class 'textdata.attrs.Dict'>, keyclean=<function keyclean>, **kwargs)

	Alternate table parser. Renders not a list of lists, but a list of
attribute-accessible Dict (dict subclasses).

	Parameters

	
	source (Union[str, List[str]]) – Text to parse (as string or list of lines)

	dict (type) – dictionary subtype in which to return results

	keyclean (Union[Function, None]) – function to clean table headers
into more suitable dictionary keys

	**kwargs – All other kw args passed to textdata.table

	Returns

	list of dictionaries, one per non-header row

Notes

	Those who like how textdata simplifies data extraction from
text should also consider quoter [https://pypi.org/project/quoter],
a module with the same philosophy about wrapping text and
joining composite data into strings.

	Automated multi-version testing managed with the wonderful
pytest [https://pypi.org/project/pytest],
pytest-cov [https://pypi.org/project/pytest-cov],
coverage [https://pypi.org/project/coverage],
and tox [https://pypi.org/project/tox].
Continuous integration testing
with Travis-CI [https://travis-ci.org/jonathaneunice/textdata].
Packaging linting with pyroma [https://pypi.org/project/pyroma].

	Successfully packaged for, and tested against, all late-model versions of
Python: 2.7, 3.3, 3.4, 3.5, 3.6, and 3.7 pre-release, as well as recent
versions of PyPy and PyPy3.

	The author, Jonathan Eunice
or @jeunice on Twitter [http://twitter.com/jeunice] welcomes
your comments and suggestions.

Installation

To install or upgrade to the latest version:

pip install -U textdata

You may need to prefix these with sudo to authorize
installation. In environments without super-user privileges, you may want to
use pip’s --user option, to install only for a single user, rather
than system-wide. Sometimes you need to use pip2 or pip3 to install
under a given version of Python. If your pip programs don’t seem well
configured for the version of Python you want, you can install directly:

python3.6 -m pip install -U textdata

Testing

If you wish to run the module tests locally, you’ll need to install
pytest and tox. For full testing, you will also need pytest-cov
and coverage. Then run one of these commands:

tox # normal run - speed optimized
tox -e py27 # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini # run full coverage tests

Change Log

2.3.2 (September 20, 2018)

Removed print() inadvertently added in last release.

2.3.0 (September 15, 2018)

Changed tab handling behavior. Previously used
str.expandtabs() uniformly. While useful for dedent (removing
common line indentation), could obscure important internal tabs.
Default behavior is now to NOT expandtabs unless explicitly
requested. However, leading tabs are still expanded for dedent
processing.

2.2.0 (July 7, 2018)

Reorganized code. Tidied and improved comments.

Improved key cleaning for records()

Added full evaluation mode.

Strengthened table evaluations.

Improved tests and docs.

Dropped deprecated astype and literal parameters to
attrs().

Drops support for Python 2.6. Mainstream support ended 5 years
ago. Upgrade already!

2.1.0 (July 4, 2018)

Removed debugging statement inadverntaently left in code.

Improve documentation, esp. for APIs.

Enable attrs, table, and records to take the same
string or sequence of lines input as the outher routines.

Cleaned up exported names. OrderedDict no longer exported as a
convenience.

2.0.2 (July 3, 2018)

Documentation tweaks.

2.0.1

Updated for new pypi.org URLs.

Plus other minor tweaks, like tightening tox targets in favor of
Travis CI.

2.0.0 (October 30, 2017)

Major release.

Added table() and records() functions for ingesting
tabular and record-oriented data respectively.

Regularized handling of object evaluation, comment stripping, and
other attributes.

1.7.3 (October 13, 2017)

Added pyproject.toml for PEP 518 compliance.

Updated testing matrix to accomodate new PyPy3 version on Travis
CI.

1.7.2 (May 30, 2017)

Update compatibility strategy to make Python 3 centric. Python 2
is now the outlier. More future-proof.

Doc tweaks.

1.7.1 (January 30, 2017)

Returned test coverage to 100% of lines (introducing attrs()
took it briefly down to 99% testing).

1.7.0 (January 30, 2017)

Added attrs() function for parsing dict instances out of text.

1.6.2 (January 23, 2017)

Updates testing. Newly qualified under 2.7.13 and 3.6, as well as
most recent builds of pypy and pypy3.

1.6.1 (September 15, 2015)

Added Python 3.5.0 final and PyPy 2.6.1 to the testing matrix.

1.6.0 (September 1, 2015)

Added textline() routine (NB textline not textlines)
as a quick “grab a single very long line” function. It actually
allows multiple paragraphs to be grabbed, each as a single long
line, separated by double-newlines (i.e. Markdown style).

1.5.0 (September 1, 2015)

Added text() as preferred synonym for textlines(), as that
is more consistent with the rest of the naming scheme. Deprecated
textlines().

1.4.3 (August 26, 2015)

Reorganizes documentation using Sphinx.

1.4.2 (August 17, 2015)

Achieves 100% test coverage. Updated testing scheme to
automatically evaluate and report combined coverage across
multiple Python versions.

1.4.0

Allows all routines to accept a list of text lines, in addition to
text as a single string.

1.3.0

Adds a paragraph constructor, paras.

1.2.0

Adds comment stripping. Packaging and testing also tweaked.

1.1.5

Adds the bdist_wheel packaging format.

1.1.3

Switches from BSD to Apache License 2.0 and integrates tox
testing with setup.py.

1.1.0

Added the words constructor.

1.0

Misc. changes from 1.0 or prior:

Common line prefix is now computed without considering blank
lines, so blank lines need not have any indentation on them just
to “make things work.”

The tricky case where all lines have a common prefix, but it’s not
entirely composed of whitespace, now properly handled. This is
useful for lines that are already “quoted” such as with leading
"|" or ">" symbols (common in Markdown and old-school
email usage styles).

textlines() is now somewhat superfluous, now that lines()
has a join kwarg. But you may prefer it for the implicit
indication that it’s turning lines into text.

Index

 A
 | D
 | L
 | P
 | R
 | T
 | W

A

 	
 	attrs() (in module textdata)

D

 	
 	Dict (class in textdata)

L

 	
 	lines() (in module textdata)

P

 	
 	paras() (in module textdata)

R

 	
 	records() (in module textdata)

T

 	
 	table() (in module textdata)

 	
 	text() (in module textdata)

 	textline() (in module textdata)

W

 	
 	words() (in module textdata)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 textdata

 		
 Lines and Text

 		
 Words

 		
 Paragraphs

 		
 Attributes (Dicts)

 		
 Tables

 		
 Comments

 		
 Unicode and Encodings

 		
 Alternate Data Paths

 		
 API Details

 		
 Notes

 		
 Installation

 		
 Change Log

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

